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Amplification and displacement of chaotic attractors by means of unidirectional chaotic driving
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Chaotic systems, when used to drive copies of themsébtweparts of themselvésnay induce interesting
behaviors in the driven system. In case the later exhibits invariance under amplification or translation, they may
show amplificationreduction), or displacement of the attractor. It is shown how the behavior to be obtained is
implied by the symmetries involved. Two explicit examples are studied to show how these phenomena mani-
fest themselves under perfect and imperfect coupli8d063-651X%98)13206-3

PACS numbeis): 05.45:+b, 42.65.5Sf, 47.52:j, 95.10.Fh

Pecora and Carroll1] have reported a driving method dx,

(PCM for shori that allows synchronization between two — =fa(X1,%2), (2b)
dt

identical chaotic systems. This has been successfully imple-
mentgd In experiments; in par_tlcular, it has b_een_ obseryed 'h particular, given this decomposition, the subsystem will
electric circuits[2,3] and used in telecommunication dewcesb attracted to a set of point,C R"2
[4]. Further developments have focused towards generalizede_l_he set of transformpations of cbordinat@s'x ot
forms of synchronization[5,6], understood as situations om EM ™. all have the same functional forr.nzeaczh’par-
where the two systems evolve in perfect correlation dESpltg ular\ transfo}mation is specified by the values’of a set of
that their distance in phase space does not go to zero, as tersP=(pP. P pP hy h ch i
the Pecora and Carroll synchronization. Recently, there hagarameters =(P1,Py, ...,Pg), which change continu-

appeared two interesting behaviors of a response under cthSIV in-a given interva!,Pie[ai,bi]C]R, SPCh that 0
otic driving [7]: the amplification(reduction of a chaotic e[a;,b;], to produce the different transformations of the set.

attractor. and the sustained evolution of the driven syster‘r{t is assumed that these transformations are continuous in the

repeating the drive attractor, in a region of phase space faenSe thatP—P’|—0 implies| Tp(x;) — Ter(xp)| 0 for all
from where the stable attractor lies. Because the drivind®©iNtSXz € Ap. Moreover,Tp—1, whenP—0, wherel is the
scheme proposed is the same as that used by Pecora dfi§ntity- Under any one of this transfomlanons ERp) re-
Carroll for synchronization, there is no doubt about the posMains unchanged; i.e., Eb) holds forx; as well as for
sibility of preparing an experimental setting for their obser-X2- Two particular transformations of that type will be stud-
vation. Moreover, such driving situations might occur in na-i€d: an amplitude transformation, defined By(xz) =A-x,,
ture (e.g., the case of neuronal systems has been the object Wfth A€ R, and a displacement transformation, defined by
speculation[1,8]). The possibilities of getting amplified To(X2)=Xz+D, with De R"™. o
(shrunken copies of a given chaotic signal, or copies of a In the PCM[1,8], for that type of system, the drive is
system steadily evolving within variable ranges differentdescribed by Eqs(2), and a copy of the symmetric sub-
from those imposed by its constrains, enriches the range @ystemx,, denoted by, , called the response, is prepared so
behaviors expected from driven chaotic systems, and thethat its dynamics is governed by the equation
provides new tools for prediction, explanation, or application
in science and technology. The aims of this report are to dx, ,
show how the behavior to be obtained is implied by the H:fz(xl’xz)’ ©)
system symmetries, to study these systems to gain insight
into how these phenomena manifest themselves, and to shQhjch is driven by the variables;, that constitute the drive
that they are rot_au;t enough tq be observe.d in experlmentssigna|_ The trajectory)(t) =x,(t) is a solution of Eq(3) if
Consider a dissipative nonlinear dynamical system %,(t) is a solution of Eqs(2) in .A,. However, for this syn-
dx chronized state to be asymptotically stable, all Lyapunov ex-
—=f(x), ) ponents of the response, called conditional Lyapunov expo-
dt nents, have to be negative. Synchronization can be tested by
computing the largest conditional Lyapunov expondnt

. N . . . .
with xe R", whose evolution is chaotic and occurs in @ \which can be obtained from the time evolution of the drive

strange attractorA [9]. Divide the set ofx coordinates in

as
two subsets; € R" and x, e R"2, wheren;+n,=n, such
that the latter is invariant under a set of transformations of
: . 1 [oxo(t)]
coordinatesTp, that act only on the variableg,. Then, the A=lim=In—"r-—, (4)
dynamical equations are rewritten as et [0%(0)]
dx, where 8x,=|x;—X,| is an infinitesimal deviation af; from

Tt XX, (23 X,. If A<0, itis guaranteed that there will be asymptotically
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stable synchronization from an appropriate subset of initialve have what it is known as uniform stabilifg], which is
conditions of drive and respon§,10]. defined by the following condition: ifx5(0)— Tp[X2(0)]]
For the type of symmetric systems studied in this papers< s for some small positive real numbér there must exist
when the coordinate transformatidiy is applied to thex, another small positive real number, such that|x,(t)
subsystem attractoul,, one obtains a copy of iffp(A2),  —Tp[x,(t)]|<e for t=0. It is to be noted that uniform sta-
which somehow mimics4,. For the amplitude transforma- bility, although weaker then asymptotic stability, is stronger

tion Tp(Ay) is an enlarged or shrunken copy.df, while for  than another type of stability, frequently found in nature and

the displacement transformation it is a fair copy.4§ dis-  technology, orbital stability. This is defing€] as the case in
placed from the region where the stable attractor evolves. Wgihich if [x}(0)— Te[x,(0)]| <, there must exist as and

know that when initial conditions of drive and response aresome functiont* (t) such thatx}(t*) — Te[X,(t)]|<e for t
such thatx;(0)=x,(0) the evolution ofx, andx; is such  >q: so, in this last case, there is no isochronous correspon-

thatx,(t) =x,(t) for t>0. Therefore, because E@b) holds  dence between the two time evolutions that one finds in the
for x5 , it must happen that if the response initial condition iscases of asymptotic and uniform stability.

Tp[X>(0)], it will evolve in Tp(.A,) following a trajectory in The amplitude transformation has been studied in the Lo-
perfect synchrony witlx,(t) that follows some type of copy renz modelLM for short) for convection in fluidg11] given
of A,, amplified (shrunken or displaced. by x=a(y—X), y=(r—z)x—y, andz=xy— bz The values

For these systems, the largest conditional Lyapunov eXaf the parameters ate= 16, r =45.92, ancb=4, as in[8].
ponent has to be zero. Becaubg is continuous, a single The equations fok andy are invariant under an amplitude
small perturbation applied to the response, when it is foIIow-transformationTA(X,y)E(AX,Ay)_ Therefore, one can ob-
ing a trajectory inTp(.A;), will send it to another trajectory, serve the amplification of the signal in tiey plane. Then,

in Tp, sp(A2), similar and close to the former where it will the appropriate drive signal &5 and the response subsystem
stay. Becaus&p— I, whenP—0, one can have the points of s described by

Tp(A,) as close as the point 04, as desired. Therefore, if

the initial condition for the response i$yx,(0)], i.e., X =a(y' —x), (72
X5(0)=X,(0), it will follow a trajectory inTo(.A,) = A, that
exactly reproduces,(t). Then, a small perturbation applied y/ —(r—2)x'—y'. (7b)

to the response evolving id, will send it to a trajectory in
Tsp(Az), with 6P small, so that it is a close reproduction of  The displacement transformation is studied in the double
the unperturbed trajectory id,. Therefore, there is neither scroll (DS for shor}, which is a model of an electric circuit
divergenceA>0, nor convergence) <0, of close trajecto- 12 3: x=a[y—x—f(x)], y=x—y+z, and z=— A8y,
ries, and thenA =0. _ _ wheref(x) =bx+%(a—b)[|x+1|+|x—1|]. The parameter

In particular, for the case of the amplitude transformation,gjyes studied area=10, B=14.87, a=—1.27, and
every initial condition of the response will evolve in a set, ,— _( g8 as in[3]. The equations fok andz are invariant
Ta(A), whose points are related to 'Fhose of the originalynderT,(z)=z+D; therefore, one may obtain a displace-
system attractor by means Bf=Ax,, with the value ofA  ment of the attractor in the direction using as the response
determined by the values of the initial condition. Therefore,y copy of the k,z) subsystem. Then, the drive variable will
%o(1) =[X3(1) = Xo(t)[=[A—1|[xx(t)], and with [6x,(0)]  bey and the response equations will be given by
=|A—1]|x,(0)]|, with both x,(t) andx,(0) points in.A,, it
must be X' =aly—x"—f(x")], (8a)

1 |A=1xp(0)]

A=Ilim—In

T 5) z'=-py. (8b)

. ) ) . The numerical results presented have been obtained by
because the argument in the logarithm is a fluctuatingneans of numerical integrations of the above equations using
bounded quantity. For the case of the displacement transfog; fourth-order Runge-Kutta algorithm with a time step of
mation, every initial condition of the response will evolve in g 0g3 for LM, and 0.02 for DS.

a set of pointsTp(.A;), which is related to the original sys-  The conditional Lyapunov exponents have been obtained
tem attractor by means of,=x,+ D, with the value ofD  from the integration of the variational equation
determined by the values of the initial condition. Therefore,

{—o

Sxa(t) = [x5(t) =x(t)|=[D[, and with [ox,(0)|=[D], it d(dxp) ,
must be =D X5) 5%, ©
A= Iimllnﬂzo (6)  WhereDy(h(x;,Xp)) is the Jacobian of the responsexgt
ol | 0%2(0)] =X,, where the time evolution of; andx, is given by Egs.

(2). In Fig. X(a), for LM, and Fig. 1b), for DS, there appear
because the logarithm argument is a bounded constant.  some representative results for the parameter dependence of
The existence of this non-negative conditional Lyapunovthe conditional Lyapunov exponents for the response, and
exponent means that, in the present case, we will not havgie Lyapunov exponents for the original three-dimensional
asymptotically stable behaviors; i.¢xy(t) —Tp[Xo(t)]|—0 system. These figures show that the largest conditional
for |x5(0)—Tp[X,(0)]|< 8, as would occur ifA <0. Instead Lyapunov exponent, being determined by the symmetries of
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FIG. 1. Lyapunov exponentgthin lines and conditional 0 3 6 9 12
Lyapunov exponentg&hick lines as functions of the parameters of t

the system(a) r dependence for LM, an@) 8 dependence for DS.

the system, is null and does not change when the systen

parameters change, despite that this changes the behavior

the system. w
To observe the amplification of the attractor, in LM, and

the displacement, in DS, the appropriate equations of motior  _g4 . I : I . I .
have been integrated in each case. The corresponding phe 0 12 25 38 50
nomena have been monitored by means of parametric plot: t

of the variables of the response versus the variables of the
drive, which appear as straight lines when both signalsrh
evolve in perfect synchrony. The amplificatigh is mea-
sured by the slope of the straight line, and the displacement
D by its ordinate in the origin. A case for LM with initial condition, | obtained that, for LM, the function$\
conditions such that th&=5 is displayed in Fig. @), which ~ =A(xg,y() are given by two symmetric planes that intersect
shows how the/’ signal is an amplified copy, by a factor 5, the A=0 plane along a straight line that crosses the origin of
of the y signal(a plot for thex signal would have to look coordinates. The inclination and orientation of these planes,
almost the sameThe results in Fig. @), for DS with initial  given respectively by the anglé between the planesé
conditions appropriate to obtaiB=10, show howx’(t) =A(xg,Y) and A=0, and by the anglep between the
=x(t), while z'(t)=z(t)+10. Similar calculations per- straight line made by the intersection between those planes
formed for the same systems using different initial condi-and thex; axis, change with the values of the drive initial
tions resulted in the same types of behaviors, but with difcondition. For DSD=D(x},2}) is given by a plane whose
ferent numerical values fok or D. _ _intersection with thdd =0 plane is a straight line parallel to
The magnitude of the amplification, or displacement, ISthe x4 axis. The inclination and orientation of this plane does
determined by the initial conditions of the systems. Becausgq change with the initial condition of the drive, while the
of the uniform stability that characterizes this case, we havgjisiance between its intersection with fhe-=0 plane and the
to expect a linear relation between or D, and the initial X, axis, 8, changes with the drive initial condition. To ex-

ggﬁ“ﬁﬁoﬁa’vgen&zﬁiﬁyfrfgrgfatlg ggfaec:;)er g‘;sadﬁsggdiﬁirt‘i;ﬁl&re those dependencies on drive initial conditions | have
P determined the function®\=A(x},y) and D=D(xg,z})

condition for the drive, and studied the degree of FJmmlmca'for sets of drive initial conditions made of points taken con-

tion, or displacement, for initial conditions of the response : : . )
o L , secutively along a trajectory in the stable attractor. Figure
evenly distributed on a rectangular grid in tkey’ plane, 3(a), for A(X! .y d Fig. 3), for D(x’ .2}, show thatd
for LM, or the x’-z’ plane, for DS. For a given drive initial ), for A(Xo,Yo), and Fig. &), or (X0,Z9), show tha
and ¢, as well asé, change continuously and smoothly as
the drive evolves in its attractor.

To study the behavior of the response trajectories in the
presence of external noise, a series of time evolutions have
been performed adding a Gaussian white néjge the drive
N signal. The control parameter in this study is the dispersion

FIG. 3. (a) Time dependence of the anglésand ¢, for LM. (b)
e same for the distanc®&for DS.
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FIG. 2. Amplification and displacement monitored by means of
parametric plots{a) y signal for LM with initial conditions chosen
to getA=5, and(b) x andz signals for DS with initial conditions
chosen to obtai = + 10.

in the distribution ofs;, o, given in units of the amplitude of
the signal considered. Calculations made for a fixed obser-
vational time window of 16 time steps(about 100 orbits
showed that, once the time window is fixed, there is a level
of noise below which one obtains a response trajectory that
accurately reproduces the drive attractor amplified
(shrunkem, for LM, or displaced, for DS. Once that level of
noise is overcome these trajectories exhibit a diffusivelike
behavior: for LM one obtains amplified copies of the drive
attractor with an amplitude that fluctuates, and for DS one
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obtains displaced reproductions of the drive that shift up and (a)
down along the axis. Moreover, | have studied the average 1.0000 CFOICIII:S
size of the windowW, in which the response reproduction

of the attractor is acceptable, as a function of the amplitude

of the noise. The quantityy was defined as the average O 0.9998
length of the time interval in which a fit to a straight line of
x'=x"(x) andy’=y'(y) (for LM), or x’=x'(x) and z’
=2'(z) (for DS) starts to fail for each level of noise. Such a
breakdown of the fit was defined as the case when the cor-
relation coefficient of the fit drops below 0.9999. This
choice, although somewhat arbitrary, is based on results ob- FIG. 4. (a) Breakdown of the synchronizationlike behavior mea-
tained for the dependence of this quantity with the level ofSured by the correlation coefficien€C) for LM (circles and DS
noise for a fixed time window (Z0time steps as those dis- (sguare}s (b) Window size where the response is a fair copy of the
played in Fig. 4a). The results obtained fow(o,) and drllve attractor as a function of the amplitude of the noise for LM
W(a,), displayed in Fig. 4), show that these functions are (circleg and DS(squarek

potential laws, and increase as the noise level decreases._ of these phenomena has shown that under perfect coupling

In conclusion, when chaotic systems that exhibit invar-yhe largest conditional Lyapunov exponent is indeed null, it

ance properties under a special type of continuous transt{é possible to observe amplified or displaced trajectories in

mation are SUbJe?t to chaotic <Ijr|V|.ng l_mder a PCM, they Cahe computer simulations, and the degree of amplification or
undergo interesting synchronizationlike phenomena. Thes

includ tial lificati f the attract d disol 8isplacement obtained is smoothly dependent on the initial
Include partial ampimcation ot the attractor, and diSplace-g,, 4o Computer simulations under situations of exter-
ment of it to a region of phase space where the origina

system is unstable. The particular orbit is determined by th Izlicljvr\]/oéi?)er}%insiglozvgs:ahr?/tattir;i phenomena studied here can
initial conditions. It is a consequence of these symmetries '

that the largest conditional Lyapunov has to be null; then, the This research was supported by DGICYT, through Project
stability is not asymptotic, but uniform. The numerical study Nos. PB93-0780 and PB96-0392.
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